Contribution from the Department of Chemistry, Imperial College of Science and Technology, London S.W. 7, United Kingdom

Spectroscopic Studies of Substituted Imidazole Complexes. II. N-methylimidazole Complexes of Divalent Cobalt, Nickel, Copper and Zinc

D. 1111. L. Goodgame, M. Goodgame, and G. W. Rayner-Canham

Received March 20, 1969

The preparations are reported of various 6: 1, 4: 1, 2: **1** *and* 1: *1 complexes of N-methylimidazole with* 2:1 and 1:1 complexes of N-methylimidazole with divalent cobalt through zinc. The results of electronic and low frequency vibrational spectral and magnetic susceptibility measurements are presented and are *ased* to assign coordination geometries. E.p.r. data are also given for the copper complexes.

Introduction

As part of our program to investigate the coordi-As part of our program to investigate the coordination behavior of ligands containing the imidazole ring we recently described¹ some complexes of co $balt(II)$ through zinc(II) with 2-methylimidazole, The steric influence of the methyl group in the 2-position was sufficient to prevent the isolation of 6:1 complexes and also led to the formation of an unucomplexes and also led to the formation of an unusual coordination geometry in the case of the compounds $Ni(2-methylimidazole)_{4}X_{2}$ $(X = CI$ or Br). We report here an extension of this work to the ligand N-methylimidazole $(=L)$. As well as a reduction in the steric factor mentioned above the alkylation of one of the ring nitrogens would be expected to diminish considerably the hydrogen bonding capability of the ligand.

Experimental Section

Unless stated otherwise the compounds were dried Unless stated otherwise the compounds were dried in vacuum over P_2O_5 . Analytical results (C, H, and N by the Microanalytical Laboratory, Imperial College) for all the compounds were good.

ML&. 2Hz0 (X = Cl, Br; M = Co, Ni), ML_6X_2 , $2H_2O$ $(X = Cl, Br, M = CO, NI)$ ML_6X_2 $(X = 1, NO_3; M = Co, N_1).$ The approximate method priate hydrated metal salt and N-methylimidazole were mixed in $1:10$ mole ratio in hot acetone (for Co). or ethanol (for Ni). The complexes crystallised on cooling and were washed with \widehat{CCL} . The chlorides and bromides were air-dried. The cobalt compounds are pink and the nickel complexes are mauve (when prepared under strictly anhydrous conditions $Nil\&I_2$ is vellow — see Discussion section).

(1) **D. M. L. Goodgame, M. Goodgame, and G. W. Rayner-Can-ham, lnorg. Chim.** *Acfa.* **3, 399 (1969).**

ZnLhZz. A hot acetone solution of zinc iodide and $LnL₆l₂$. A not acetone solution of zinc iodide and N-methylimidazole in $1:6.6$ mole ratio gave white crystals on cooling. These were washed with ace-
tone and ether.

NiL&L. Hydrated nickel chloride was dissolved i n i L₄Cl₂. Hydrated nickel chloride was dissolved in an ethanol $\dot{2}$. 2-dimethoxypropane mixture and the calculated quantity of N-methylimidazole was added. followed by ether until a cloudiness was observed. On storage green crystals formed which were collected and washed with ether.

CuLdX2 (X = Cl, Br, NOj). The cupric salt and $\text{Cu} \text{L}_4 \text{A}_2 \text{ (X)} = \text{Cl}, \text{ Br}, \text{NO}_3$. The cupric salt and N-methylimidazole were mixed in 1:4.4 mole ratio in acetone $(X = Cl, NO₃)$ or ethanol $(X = Br)$. The chloride and nitrate separated as blue crystals, which were washed with acetone and ether. In the case of the bromide it was necessary to evaporate the solution to small bulk before the dark blue complex crystallized. The bromide was recrystallized from ethanol. The chloride was hygroscopic and formed a dihydrate on exposure to air.

CuL4Z2. Cupric perchlorate and N-methylimida- Cu Cu _{Cu} Cu O methylimidazole were mixed in \mathbf{I} : b mole ratio in ethanol. A warm solution of KI was stirred into the resulting slurry. After filtering and allowing to stand, grey crystals formed, which

MLIXI (M = Co, Zn; X = Cl, Br, I) NiLZX2 ML_2X_2 ($M = CO$, $\angle En$; $X = Cl$, $\angle BT$, I) NLL_2X_2 $(X = Cl, Br)$. The appropriate metal halide and N-methylimidazole were mixed in $1:2$ mole ratio in hot acetone (for Co or Zn) or in ethanol/2,2-dimethoxypropane (for N₁). The solutions were evaporated to small volume. The cobalt chloride, zinc chloride, and zinc bromide complexes crystallized spontaneously, but it was necessary to add benzene to cause precipitation of the other compounds. The cobalt chloride and bromide complexes and their nickel analogs are blue. They were recrystallized from acetone/benzene; blue-green $Col₂I₂$ was recrystallized from CH₂Cl₂/CCl₄ and ZnL₂Cl₂ from nitro-
methane.

NiL2Z2. This dark green complex was obtained $\mathcal{N}1L_2I_2$. This dark green complex was obtained by heating $NiL₆I₂$ to constant weight at 120°C in vacuum.

Inorganica Chimica Acta 1 *3* : *3* 1 *September, 1969*

 $\mathcal{C}uL_1X$, $(X = \mathcal{C}l \ NQ_1)$ for the corresponding $4 \cdot 1$ $2:1$ mole ratio of ligand to metal salt. They were recrystallized from acetone. The chloride is green These were prepared as $complexes$ but using a and the nitrate is blue.

 $CuL₂Br₂$. Cupric bromide was stirred into a hot acetone solution of the calculated quantity of N-methylimidazole. The solution was filtered and allowed to cool, when green crystals separated. These were collected and washed with acetone and ether.

 $Ni L X_2$ (X = Cl, Br). The nickel halide was dissolved in an ethanol/2,2-dimethoxypropane mixture. After concentration, the calculated amount of N-methylimidazole was stirred into the hot solution. The solid which formed was collected, washed with etha- $\text{pol}/2$, 2-dimethoxypropane, and then with ether. The chloride is yellow and the bromide orange-pink.

 $CuLCl₂$ Equimolar proportions of cupric chloride and N-methylimidazole were mixed in acetone and filtered. Concentration of the filtrate caused the separation of the khaki-coloured complex.

Physical Measurements. These were carried out as described previously.^{1,3}

Results and Discussion

We have isolated the compounds ZnL_6I_2 and ZnL_2X_2 $(X = Cl, Br, I)$ and the cobalt, nickel, and copper complexes listed in Table I. The formation of $6:1$ complexes by N-methylimidazole contrasts with the

behavior of its 2-methyl-analog which did not form complexes of that stoichiometry with these metal $s^{1,4}$ This, presumably, reflects the decrease in the steric hindrance on moving the methyl group from the carbon atom adjacent to the coordinating nitrogen. However, the hexakis-N-methylimidazole compounds are formed less readily than their imidazole ana- $\log s^{3.5}$ and are also less stable towards loss of ligand after isolation.

The preparation of $CoL₆Cl₂$, 2H₂O, for example, required a large excess of N-methylimidazole and the solid compound had to be air-dried at room-temperature to avoid loss of the ligand. Even so the finely powdered solid tended to change to $Col₂Cl₂$ on prolonged exposure to the atmosphere. The ease of removal of ligand from the hexakis-compounds was in the order $\overline{CI} > Br > I \sim NO_3$ for the anion, and $Co > Ni$ (for nickel, the solid compounds appeared to be quite air stable, but attempts to dehydrate the chloride and bromide under vacuum, or thermally, led to ligand loss here, also).

The compound NiL_6I_2 could be obtained in either of two colours, mauve or yellow, the latter being formed when strictly anhydrous conditions were maintained during the preparation. However both forms had identical X-ray powder patterns, magnetic moments and low frequency infrared spectra, and neither showed the presence of lattice water either by their infrared spectra or by the analytical results (Found for yellow form C, 35.78 ; H, 4.42 ; N, 20.76. Found for mauve form C, 35.94; H, 4.35; N, 20.92. Calcd. for NiL₆I₂, C, 35.82; H, 4.47; N, 20.86%). The difference in colour arises from

Table I. Room temperature magnetic moments and diffuse reflectance spectral band energies of the complexes

	$\mu_{eff}(B.M.)$	v (cm ⁻¹)
$CoL6Cl2$. 2H ₂ O	5.06	9,430, ~16,000 wsh, ~19,100 sh, 20,400
$CoL6Br2$. 2H ₂ O	5.05	9,520, ~15,300 wsh, ~16,100 wsh, ~19,100 sh, 20,500
$CoL_{6}I_{2}$	5.00	9.750, ~14.300 wsh, ~16.200 wsh, ~19.100 sh, 20,600
$CoL_6(NO_3)_2$	5.16	9,700, \sim 16,000 wsh, \sim 19,100 sh, 20,500
CoL ₂ Cl ₂	4.66	6,400 sh, 7,050, 9,090, 15,900, 16,500, 17,200 sh, b
CoL ₂ Br ₂	4.69	6.200 sh, 6770, 8700, 15,100, 16,300, 16,900 sh $\frac{1}{2}$
CoL ₂ I ₂	4.67	6,100 sh, 6670, 8200, 14,600, 15,800, 16,600 sh, $\frac{1}{2}$
$NiL6Cl2$. 2H ₂ O	3.16	10.600, ~13.500 wsh, 17.200, ~23,200 wsh, 26,900
$NiL6Br2$. 2H ₂ O	3.11	10,700, ~13,300 wsh, 17,300, ~23,500 wsh, 26,900
$Nil_6I_2^c$	3.12	10.900. \sim 13.300 wsh, 17.700, 26.300 vs
$\mathrm{NiL}_{6}(\mathrm{NO}_{3})_{2}$	3.01	10.900, ~13.300 wsh, 17.500, ~23,800 wsh, 27,200
NiL_1Cl2	3.18	7,870, 11,200, 13,200, 16,100, 20,500 vw. 25,600
NiL ₂ Cl ₂	3.29	\sim 5700 br, \sim 9000 sh, 10,900, \sim 12,500 sh, 17,400, \sim 18,500 sh, 24,400 w
NiL ₂ Br ₂	3.43	\sim 5550 br, 8770, 10.900, \sim 12.000 sh, 16.400, \sim 17.400 sh, 23.900 w
NiL ₂ I ₂	3.44	\sim 5700 br, 8150, 10,200, \sim 11,000 sh, 15,200, \sim 18,400 sh
Ni _L Cl ₂	3.47	7600 $\frac{d}{2}$, 12,100, 13,100, ~18,500 wsh, 22,200
NiLBr ₂	3.39	7250 d, \sim 11,400 sh, 12,400, \sim 18,000 wsh, 21,400
$CuL4Cl2$. 2H ₂ O	1.84	\sim 14.300 sh. 17.200.
CuL ₄ Br ₂	1.87	16,700
CuL ₄ I ₂	1.88	16,700, 25,800
$CuL4(NO3)2$	1.91	17,200
CuL ₂ Cl ₂	1.91	12,200
CuL ₂ Br ₂	1.88	14,600, 24,400
$CuL2(NO3)2$	1.85	\sim 13,800 sh, 15,400
Cu _L Cl ₂	1.84	\sim 6000 vbr, w, sh, 12,500, \sim 21,000 sh

^a Low energy absorptions obscured by vibrational bands. ^b High energy spin-forbidden bands omitted for conciseness. ^c Yellow form. d Asymmetric to lower energy.

Canham. and A. C. Skapski, to be published. *I. Ch. Ch. Ch. Ch. Ch.*

Canham. and A. C. Skapski. to be published. I. Chem. Sot. *(A). 128* **(1968).** (4) W. J. Eilbeck, F. Holmes, C. E. Taylor, and A. E. Underhill, *J. Chem. Soc.* (A), 128 (1968).

(5) W. J. Eilbeck, F. Holmes, and A. E. Underhill, *ibid.*, 757 (1967)

and appreciable enhancement of the spectral intense $\mathcal{L}_{\mathcal{A}}$ intense of the 4: 1 cupric halide coman appreciable enhancement of the spectral inten-
sity in the region of the ${}^{3}A_{2x}\rightarrow {}^{3}T_{1g}$ (P) transition for plexes are also typical of tetragonal copper (II) sythe yellow form, but the energies of the d-d bands stems. The g-values, measure for the two forms are the same. $\frac{d}{dx}$ are listed in Table II.

Electronic Spectra and Coordination Geometries. The room-temperature magnetic moments and diffuse reflectance spectral band energies are listed in Table I. The near identity of the spectra of the hydrated 6:1 complexes of cobalt and nickel with those of the related anhydrous compounds indicates that the water molecules are not coordinated. The Dq value of N-methylimidazole is \sim 1080 cm⁻¹ and is thus very close to that of imidazole itself.⁵

In contrast to the behavior of 2-methylimidazole only one $4:1$ complex could be obtained with the nickel halides, NiL₄Cl₂. The electronic spectrum of this compound shows the pronounced splittings of the ³T_{1g}(F) and ³T_{2g} levels typical^{6,7} of *trans*-distorted octahedral (D_{4h}) nickel compounds. The spectrum of NiL₄Cl₂ is, in fact, very similar to that⁸ of Ni(pyrazole)₄ $Cl₂$, which is known⁹ to have this type of configuration with $Ni-N = 2.09$ and 2.10 Å, and $Ni–Cl = 2.51 \text{ Å}.$

The spectra of the $2:1$ cobalt and nickel complexes, and the magnetic moments of the former, suggest that they have pseudo-tetrahedral configurations. The nickel compounds have two d-d bands below $10,000$ cm⁻¹ which are presumably components of the ${}^{3}T_{1g}(F)$ level split in a very distorted ligand field. The compounds Ni(di-2-pyridyl-amine) X_2 ($\overline{X} = \overline{B}$ r, I) also show two bands in this region,¹⁰ whereas usuall only one broad band is observed.^{1,11} The relativel small orbital contribution to the magnetic moments of the nickel complexes is typical of those found for distorted tetrahedral geometries. The tetrahedral structure of $NiL₂Cl₂$ contrasts with the octahedral, polymeric configuration of its analog with 2-methylimidazole¹ in the solid state (the latter was tetrahedral in acetone¹).

The spectral and magnetic properties of the polymeric 1:1 nickel halide complexes are very similar to those of their benzimidazole¹² and imidazole³ $\log s$. The reflectance spectra of the C uL4 α

The reflectance spectra of the $CuL₄X₂$ compounds each showed a broad band with its maximum in the region $16,500-17,500$ cm⁻¹. Despite the fact that no anion-dependent vibrational bands were observed in the 400-200 cm⁻¹ region (see below) the electronic band energies and contours varied with X suggesting that the anions, or possibly the water molecules for $CuL₄Cl₂$. $2H₂O$, are weakly coordinated as in Cu en₂X₂ and related compounds.¹³ The e.p.r. spectra of

plexes are also typical of tetragonal copper(II) systems. The g-values, measured by Kneubühl's proce-

Table II. E.p.r. parameters for some N-methylimidazole complexes of copper(II)

μ \sim σ σ μ μ μ μ σ μ	gil	g,	A_{11} (cm ⁻¹)
$CuL4Cl2$. $2H2O$	2.28	2.00	0.0175
CuL ₄ Br ₂	2.28	2.01	0.0175
CuL ₁	2.27	2.00	0.0164
$CuL4(NO3)2$	a	2.00	
CuL ₂ Cl ₂	2.28	2.10, 2.05	
$CuL2(NO3)2$	2.27	2.05	

^a Poorly resolved.

In each case the g, signal showed hyperfmetric showed hyperfm In each case the g,, signal showed hyperfine components with A_{\prime} , close to 0.017 cm⁻¹. The spectrum of $CuL₄(NO₃)₂$ was also of the two g-value type but here line broadening was sufficient to prevent an accurate measurement of g_{μ} . This effect was even more pronounced for polycrystalline samples of CuL_r $Br₂$ and CuLCl₂ and for these only a very broad derivative signal was observed. The powder pattern of $CuL₂Br₂$ showed that it was not isomorphous with its cobalt and zinc analogs and its electronic and far infrared spectra suggest that it has a tetragonal, halide-bridged structure. Halide bridges are also probable in CuLCl₂, the electronic spectrum of which resembles those of some reversed tetragonal copper (II) complexes, such as β -Cu(NH₃)₂Br₂¹⁵ when allowance is made for the weaker total ligand field in the $1: 1$ N -methylimidazole complex. The 1:1 copper chloride compound was not isomorphous with its nickel analog. \log .

In contrast to the results for $CuL₂Br₂$ the e.p.r. spectrum of the corresponding nitrate showed both g_{11} and g_1 bands and for CuL₂Cl₂ a three g-value spectrum was observed. The $2:1$ cupric halide complexes differ not only in their e.p.r. spectra but also in their electronic and far infrared spectra. The d-d band of the chloride (Table I) is at distinctly lower energy than that of the bromide and those of some other halide bridged copper(II) complexes.¹⁶ Although X-ray powder photographs show that CuL_2Cl_2 is not isomorphous with its cobalt and zinc analogs¹⁷ the close similarity of the low frequency infrared spectra of the series of compounds ML_2Cl_2 $(M = Co, Ni, Cu, Zn)$ (Table III) suggests the $CuL₂Cl₂$ has a distorted tetrahedral configuration. The electronic band energy of $12,200 \text{ cm}^{-1}$ is comparable to those of other copper(II) compounds thought to have this geometry^{1,18,19} but there is not the band splitting observed^{1,18} for some of these compounds.

- **(14) F. K. Kneubühl,** *J. Chem. Phys., 33, 1074 (1960).***

(15) A. A. G. Tomlinson and B. J. Hathaway,** *J. Chem. Soc. (A),**2578 (1968).* **

2147 (1968). Dilling and A. E. Underhill. I. forg. Nucl. Cham.. 30.**
- **(17) CoL,Cl, and ZnL,Cl, are isomorphous. (18) L. Sacconi and M. Ciampolini. f.** *Chem. Sm.,* **276 (1964). (19) D. Forster and D. M. L. Goodgame.** *ibid.. 262 (:965).*
-
-

⁽⁶⁾ D. M. L. Goodgame, M. Goodgame, M. A. Hitchman, and R. S. A. S. Rowley and R. S. A. Rowley B. S. A. Rowley B. S. Dr. S. A. Rowley B. S. A. Rowley B. Rowley B. Rowley B. Been partially and the reflection of the reflect

⁽⁸⁾ The reflectance spectrum of $\text{Nil(pyrazole)}_2\text{Cl}_2$ has been partially
 The complete list of department is a state of the complete list of department

Exercise of d-d bands is: 8,150, 11,800, 13,300, 16,500,
 \sim 21,300 vwsh, 26,000 cm⁻¹.
 \sim 21,300 vwsh, 26,000 cm⁻¹.

(9) C. W. Reimann, A. D. Mighell, and F. A. Mauer, Acta Cryst.,

3, 135 (1967).

(10) C. D. Bur

⁽¹³⁾ B. M. L. Goodgame, M. Goodgame, and M. J. Weeks, *j*
Chem. Soc., 5194 (1964).
*R. B. Hathaway, B. Billing. B. Nicholls, and J. M. Broth***e</u>**

 $\frac{1}{\sqrt{2}}$ (M-N) of the bands of M_1 memphimatelers $\frac{1}{\sqrt{2}}$ complexes

		Ligand band	$v(M-X)$	$v(M-N)$	Other bands
CoL ₂ Cl ₂	IR a	368 mw	323 s. 296 s	267 ms	240 w, 219 w, 160 w, 142 s, \sim 105 mbr
CoL ₂ Br ₂	IR	367 m	$259 s$, 184 s	271 sh	248 m, \sim 222 wsh, 158 s, 137 s
CoL ₂ I ₂	IR	365 w	219 _s	270 ms	242 mw. 162 s. 145 s
NiL ₂ Cl ₂	IR	370 w	323 s. 288 s	269 _m	\sim 238 wsh, 227 wbr, 175 mbr, 145 s, 114 mw
NiL ₂ Br ₂	IR	368 m	259 s c 182 s	d	\sim 240 wsh, 161 m, 140 m, \sim 90 wbr
NiL ₂ I ₂	IR	366 m	228s	266 m , 258 ms	175 s. 154 w. 137 s. 89 w.
CuL ₂ Cl ₂	IR	382 m	311 s. 279 s	262 m	230 w, 208 m, 188 s, 167 s, 104 m
ZnL_2Cl_2	IR	368 m	$306 s$, 285 s	235s	216 m. 183 w, 160 ms, 144 s, 112 m
	R	371 m	289 s	----	246 w. 223 w. 189 w. 163 w. 149 w
ZnL_2Br_2	IR	366 m	234 s ^c 187 s	d	\sim 223 wsh, 159 m, 137 m
	R	371 m	190 s		244 s. 175 w, 157 w, 150 s
	R ^b	394 s	187 w		
ZnL_1I_2	IR	364 m	206 s	225 _m	169 s, 140 m
	R	371 m	206 w		254 ms , 170 m , 142 s
	R^b	395 s			144 vs pol.

^{*a*} IR = infrared; R = R

L	IR	351 mw, 222 wbr
	IR ^a b	$355 s$, 223 s, 80
	R	358 m , 225 ms
	R b	353, 220
CoL ₆ I ₂	IR	371 m, 245 m, 220 s, 180 s, 170 m, 150 w, ~ 80 m
	R	376 m, 247 m
$CoL6(NO3)2$	IR	372 m, 242 m, 220 s, 180 sbr, 151 w
	R	378 m, 246 m
NiL ₆ I ₂	IR	374 w, 259 s, 230 s, 181 s, 161 m
$NiL6(NO3)2$	IR	378 w, 261 s, 231 s, 188 s, 163 mw
ZnL _s I ₂	IR	368 w, \sim 239 wsh, 188 vs
	R	373 s. 247 s, 190 sh, 105 sh
NiL_4Cl2	IR	377 w. 366 w. 254 s. 226 s. 177 s. 150 w. 117 wbr
$CuL4Cl2$. 2H ₂ O	IR	366 w, 280 s, 271 s, 248 m, 207 m, 191 s, 110 s, vbr
CuL ₄ Br ₂	IR	381 w, 374 w, 288 s, 280 s, 256 s, ~246 sh, 213 s, 197 s, 95 sybr
CuL ₁	IR	383 w, 372 w, 282 s, 260 m, ~ 245 wsh, 204 s, 195 s, 88 s
CuL(NO ₃) ₂	IR	384 w, 372 w, 296 s, 282 m, 255 s, 220 s, 206 s, 197 s, 95 s
CuL ₂ Br ₂	IR	370 m, 299 s, 218 s, 198 s, 179 s, 127 s, 87 m
$CuL2(NO3)2$	IR	377 w, 303 sbr, 222 w, 195 m, 170 w, 137 w, 88 w
NilCI _i	IR	372 w, 264 sh, 247 s, 200 s, 148 m, 83 m
NiLBr ₂	IR	370 w, 243 m, 216 m, 183 s, 158 s, 146 s, 132 m
CuLCl ₂	IR	380 w, 351 w, 325 m, 284 s, vbr, 215 w, 187 m, 167 s, 157 sh, 142 w, 116 s, 93 s

a From ref. 20. b From: C. Perchard and A. Novak, *Spectrochim. Acta,* 23 *A,* 1953 (1967).

Vibrational Specfra (80400 cm-'). The low-fre*vibrational spectra* (δv - δv) cm⁻¹). The IOW-Irequency vibrational bands of N-methylimidazole are listed in Table IV. Upon complexing the band at \sim 355 cm⁻¹ is raised in frequency. It is split into two in the anhydrous tetragonal 4:1 complexes but not in the other compounds.

Results for the anhydrous $6:1$ compounds are given in Table IV (the hydrates gave poorly resolved spectra below 200 cm^{-1} and are not listed). Assignment of the bands is complicated by two factors. First, it is uncertain how the frequency and intensity of the free ligand 223 cm⁻¹ band (assigned²⁰ as an out-of-plane skeletal (γ -CH₃--N) mode) are modified upon coordination, and, second, there is an appreciable difference between the spectra of ZnL_6I_2 and those of ML₆X₂ (M = Co, Ni; $X = Br$, I) although the three iodides are isomorphous.

The fact that the Raman bands at \sim 247 cm⁻¹ are significantly higher in frequency than the bands assigned³ as v_1 (O_h notation) for the hexakis-imidazole complexes suggests that this may correspond to the

225 cm⁻¹ band in the free ligand rather than to v_1 . However neither of the $6:1$ cobalt complexes had Raman bands at lower frequency, whereas ZnL₆I₂ had a weak Raman band at \sim 190 cm⁻¹ (cf. v_1 at 192 cm⁻¹ for $\text{Zn}(\text{imidazole})_{6}^{2+1}$. The i.r. spectra of CoL $_{6}^{2+1}$ and ZnL_{6}^{2+} also have a band close to 240 cm⁻¹, but in $NiL₆²⁺$ this, and the band at 220 cm⁻¹ for $CoL₆²⁺$, are replaced by a pair of bands at 230 and 260 cm^{-1} , and for some of the other N-methylimidazole complexes (e.g. CuL_2X_2 , $X = Cl$, Br) there are no i.r. bands between 220 and 280 cm^{-1} . It appears, then, that the \sim 223 cm⁻¹ free ligand band is either quite variable in its frequency in metal complexes or has a comparatively low intensity and is thus frequently masked by metal-nitrogen, or metal-halogen, modes. If the latter alternative is correct, then the pair of bands between 200 and 300 cm⁻¹ for CoL₆²⁺ and NiL₆²⁺ may be assigned as components of v_3 the F_{1u} M--N stretch,²¹ split because

225 cm-' band in the free ligand rather than to VI.

(21) The terms $\cdot M-M$ stretch \cdot and $\cdot N-M-M$ bend \cdot used here Let the terms \mathbf{w} is sector and \mathbf{w} is \mathbf{w} is the complex of the stretching intervalse \mathbf{w} is \mathbf{w} is

(20) C. Perchard and A. Novak, I. Chem. Phys., 48, 3079 (1968).

Goodgame, Goodgame, Rayner-Canham | N-methylimidazole Complexes of Co"-Zn"

of site or molecular symmetry lower than Oh. By of site or molecular symmetry lower than O_h . By analogy with the hexakisimidazole compounds³ the corresponding absorption for ZnL_{6} ⁺⁺ would be expect ted to be slightly below 200 cm⁻¹; only one strong band is found, at 188 cm^{-1} but this is quite broad (half-band width \sim 45 cm⁻¹). The pairs of bands at 150 and 180 cm^{-1} for Col_6^2 ⁺ and at \sim 160 and \sim 185 cm⁻¹ for NiL₆²⁺ may be due to modes with predominantly N--M-N bending character, but no corresponding band was observed for ZnL_6I_2 .

The spectrum of $NiL₄Cl₂$ below 300 cm⁻¹ closely resembles that of its imidazole analog³ but with better band resolution in the 150-180 cm^{-1} region, and similar assignments to those for the imidazole complex may be made here. The $4:1$ cupric halide complexes show no bands assignable as copper-halogen stretches, but there is an extra band at 220 cm^{-1} for the nitrate, which we tentatively ascribe to $v(Cu-O)$ of relatively weakly coordinated nitrate groups. This may be compared with the very strong, broad band at 303 cm⁻¹ for $CuL₂(NO₃)₂$ which probably contains both $v(Cu-N)$ and also $v(Cu-O)$ of the nitrate groups which would be more strongly coordinated in this compound. The spectra of the 4:1 copper complexes in this region are more complicated than that of $NiL₄Cl₂$. The chloride, bromide, and nitrate have a pair of bands in the $270-300$ cm⁻¹ region which are reasonably assigned as components of $v(Cu-N)$ (v_6 , E_u , in D_{4h}). The absence of anion independent bands between 100 and 180 cm⁻¹ suggests that one or both of the bands near 200 cm^{-1} may be due to N-Cu-N bending modes derived from v_7 (E_u) in D_{4h} symmetry.

Results and some assignments for the tetrahedral ML_2X_2 compounds are given in Table III. The $\nu(M-Cl)$ bands were readily identified, as were the

asymmetric $v(M-Br)$ and $v(M-1)$ bands. The proposed assignments for the symmetric $v(M - Br)$ absorptions give larger separations between the two metalhalogen modes than for the chlorides, but for the nickel and zinc bromides there were no other strong bands in the correct region. Moreover the assignment of the 187 cm⁻¹ band as $v_{sym}(Zn-Br)$ is supported by the observation of a Raman band at 190 cm^{-1} . (cf. 285 cm⁻¹ (IR) and 289 cm⁻¹ (R) for $v_{sym}(Zn-CI)$). Assignment of $v_{sym}(M-I)$ is not unambiguous, the choice resting between the band at $160-170$ cm⁻¹ and that at $\sim 140 \text{ cm}^{-1}$. A similar problem was encountered in the corresponding 2-methylimidazole complexes and the remarks made previously¹ apply here also. r e also, r

For all the compounds except $NiL₂Br₂$ and $ZnL₂B$ where $v_{as}(M-Br)$ interferes, at least one metal-nitrogen stretching band may be assigned. The lower frequency of this absorption for the zinc compounds compared with those of cobalt and nickel parallels the difference observed²² for tetrahedral M(pyridine)₂X₂ compounds. Many of the compounds have weak bands in the 220 and/or 240 cm^{-1} regions (Table III) but, as discussed earlier, the uncertainty as to the position of the 223 cm^{-1} ligand band precludes an confident assignment of the other, expected $v(M-N)$
band.

Acknowledgments. We thank the Agricultural Research Council for financial support, and Professor D. Rogers and Miss R. S. Osborn for the X-ray powder photographs.

(22) R. J. H. Clark and C. S. Williams, Inorg. Chem., 4, 350 (1965) .